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1.Motivation: Study of Materials under
Irradiation (A. El Azab)



Continuum in irradiated materials
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Mesoscale in irradiated materials
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Typical phase field model

From a free energy functional, we derive kinetic equations for

composition and microstructure following Onsager formalism of
non-equilibrium T.D.

g(ca 77) — /Vf(c, U)dQ

oc o0&
a =V (bVE) + f(il?,t)
Cahn-Hilliard Allen-Cahn (G.L.)

Eq. Eq.

SIAM CSE Conference, March 3, 2011



N |
Phase field model for irradiated materials

Appropriate sources and defect reactions are added to represent

the irradiation environment and defect process:

modified Cahn- Oc 0
e 5=V (V5 ) +e@ 0+ Glat) - Rz

modified Allen- on _ 55

Cahn (G.L.) Eq. a9 577 +((z,t) + Cirraa(, t)

.. if one can compute the functional derivative.
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2. The phase field energy. Double well
versus double obstacle.



Diffuse boundary model

v

We intend to track the evolution of a boundary between phases.

At the scale of interest the scale of the boundary IS NOT 0, so practically it
may not make sense to use a sharp boundary, since its velocity would be
very hard to obtain from measurement or theoretical considerations.

We thus use a phase variable 7] to define a domain:

D = {zly(z) =1} : D° = {alp(z) = 0} . D’ ={aln() € (0,1)}

So the boundary area (between void and matrix, or between grains) is
DIFFUSE, such as is the case in real apps.

Q: How do we model the free energy to accommodate this behavior?
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Free energy functional essentials

" |ts general form:
P

3
5=/! C1y €2y ooy Cpy T, T2, - anp)"'zaz (Ver)® +7 D BV | dPr+

=1 j=1 k=1
/ / G(r; — ro)dPrid’ry

= How do we deal with the boundary constraints by including an
interdiction term on the potential:

f(m) = fo+1I(n); I(n) = { ((;,o, n>1 (;)I‘S”]n<501,

fo : smooth, non-convex function
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What is the way the interdiction is handled?

= One can replace the potential by a regularized version, called “the
double obstacle potential”

f(n) = AAf (—%772 + }1774)

= But this introduces stiffness and maybe some non-physical artifacts.
If explicit, the time steps can get small, as we have observed for
years in contact problems.

= One cando clamping. The way it perturbs the physics is unclear.

= Qursolution? Deal with the actual interdiction potential.

= Consequences? Obtain a differential variational inequality.
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Cahn-Hillard equatio(ri/,// f=0
u _ V- (b(u)V(—yAu+ V' (u))) in Qr:=Qx(0,T) P
ot v _ V- (b(u)Vw) in
u(x,0) = up(x) Ve —> Ot g
g—z — b(u)a% (—yAu+ V(1) =0 on AN x (0, T) TAut Pl =w

An implicit free boundary where potential becomes infinite,
not quite specified. But DVI - WEAK is:

(au(;;’ t),Xl) =(V-(bVw),x1) Vx1€ S VI

< —

(—yAu + V'(u), xo — u(z, t)) > (w, x2 — u(z,t)) Vxo € K

Properly defined everywhere by choosing S,K
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Systems of Allen-Cahn equations

u; = b(u) (YAu — PV,¥(u))

N
1
P Pv:v—N(v-l)l G:{UERdlviZO,Zvizl}
1=1
b(u) =1 U(u) = { 2 i Uitk v E.G’ Obstacle potential
00, otherwise.

Weak form tracks diffuse boundary between the two phases 4 = () and v = 1 where
PDE is not defined.

(u,v) +y(Vu, V(v —u)) — (u,v —u) > —%(1,’0 —u) Yveg

G:={ve H Q) w(r) € G ae. in Q}
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Motivation

= The problem one wants to solve is a differential variational

inequality, but for algorithmic difficulty people go with double
well potential.

= Can DVI work?

= Challenges

— Lack of software for large-scale DVIs

— Prevailing (non-DVI) approach approximates dynamics of phase
variable using a smoothed potential: Stiff problem and undesirable
physical artifacts

e phase field variable does not have a compact support
e boundary between phases is no longer localized
— Or it does a clamping whose effect is hard to fathom.

" Hypothesis: Creating Scalable DVI solvers will address important
physics problems consistently and efficiently.
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3. Time-Stepping Schemes
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Finite element discretization Cahn-Hilliard (for
the weak form)

n__ ,n—l1 h
(u A:; ,x1) - (b(u""l)Vw”, VX1) =0 Vx; € S"

Y(Vu", V (xa—u™)+(¥' ("), xo—u") > (", x2 —w")" Vx2 € K"

S":={x € C(Q): x|, is linear Vs € 7"} C H'(Q)

Khzz{xesh:OSXglin Q}
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Complementarity formulation Cahn-Hilliard

_ un—l

0= My~ S + Myw"

0 = yMou™ + 1 (u™) My — O Mou™ + py(u" 1) Mo — Mow™ + X —
O<ALl—au">0

0<pulu">0

n

Mogiiy = (0is 1) 120
Ml(un_l){z‘,j} = (b(un_l(%))vﬁbia Vﬁbj))[ﬂ(@)
Msgi iy = (Vi, Voy) L2
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FE/complementarity formulation of Allen-Cahn

For each component u;

At
(ul', v — uf’)h + Aty(Vul', V(v —ul')) > ((1 + At)u?’_l — Wl’ v — u?)h
N
uw; >0 Zuz =1

1=1

$

Mou? + Ate*Mou!* — ((1 -+ At)Mouf,';’_l — —Mol) —A—pn=0

0<ALlwu; >0

plelu=1
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The time-stepping scheme is formulated in terms
of mixed linear complementarity problems

" The mixed linear complementarity problem:

Mz + Migze =0

Mo121 + Mooxo = 89
s9 >0 Lz >0

= TAO includes complementarity solvers for mixed linear
complementarity problems.
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4. Solvers/Environment
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Algebraic solvers

= Differential Variational Inequality
‘ Finite element discretization

= Algebraic Variational Inequality (Complementarity Problems)

‘ Newton’ s method with active set constraint or
semi-smooth solver

= Nontrivial Linear Algebraic System

‘ Nested Krylov solvers and preconditioners

= Simple Algebraic Systems

SIAM CSE Conference, March 3, 2011
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Cahn-Hillard equations

0
8_;‘ =V (0(u)V(—yAu+¥'(u)) 0<u<1
Algebraic variational inequailty
n—1

(" ) ()=

Block linear systems obtained from TAO active set

—U
Yy (un_l) — foun!

5tA£L_1 I w™ [ ..
_JT _7A a )]\

Simpler algebraic systems via Schur complements

ITA-LT
<5tAZ’1 — ) w" = ...

~

SIAM CSE Conference, March 3, 2011

a

)

21



Allen-Cahn equations
u; = yAu — PV,Y(u) u; > 0, Zuz =1
()

Algebraic variational inequailty
StI 1 \ [ w ()
—I —A I ul .

otl 1 wy | =

S T A W B S

Block linear systems from the TAO complementarity active set problems

otI I n

T A AT AN
stI I wr | =1 .
A || ow .

NS R - N A

Simpler algebraic systems via Schur complements
~ -1 ~ —1
B - —0tI I 0 - —0tI I 0
s=C (7 ) (G )reo s (T 8) ()
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e
Schur complement based preconditioners

are often a powerful technique because using right preconditioned GMRES on
A B
C D

A B -1
0 S=D—CA'B

converges in at most two iterations with an exact Schur complement solver,
Ipsen, SISC, 2001. A nested solver approximately applies S-' by approximately
solving

with preconditioner

g — .D — Capprox(A)—lB

with preconditioned GMRES. Similarly A is approximately solved via GMRES.

SIAM CSE Conference, March 3, 2011
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Coupled Cahn-Hillard and Allen-Cahn example

Block structure of Jacobian for active set or semi-smooth method.

Multiple nesting of Schur complement preconditioners can be used to
precondition the system efficiently.

n—1
( 5t_AIbT

~
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e
Solvers for complementarity problems

= PATH
— Extremely robust (sequential) library with a MATLAB interface
— Solves a linear variational inequality at each iteration to find direction
— Globalized with a line search using the Fischer-Burmeister merit function
— Applies sophisticated preprocessing to improve formulation
— Successfully used to solve general models with up to 100,000 variables

= Semismooth
— Robust (parallel) solver in TAO and PETSc
— Reformulates variational inequality as a nonsmooth system of equations
— Applied Newton’s method to the nonlinear system using subdifferential
— Reduced linear system with a positive diagonal perturbation
— Globalized with a line search using the Fischer-Burmeister merit function
— Successfully used to solve PDE-based models with millions of variables

= Active-set
— Scalable solver in TAO and PETSc
— Constructs and solves a reduced linear system
— Linear algebra requirements similar to those for solving the PDE
— Globalized with a line search using the Fischer-Burmeister merit function

— For certain symmetric systems, method is equivalent to:
e Projected gradient step to obtain active set
e Newton acceleration step for fast convergence

— Successfully used to solve PDE-based models with millions of variables

SIAM CSE Conference, March 3, 2011
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Software developments

= Solvers (in PETSc):
— Added SNESVISetVariableBounds(SNES,Vec,Vec)

— Added two new SNES Newton-based line search subclasses

e SNESVI active set and SNESVI semi-smooth both use PETSc’s flexible linear solver classes,
allowing easy use of nested Schur complement solvers.

e Work requirements of both solvers is O(number of nonzeros in Jacobian) so overall
efficiency of and scalability of solvers is determined by efficiency of linear solvers only.

e Available to entire research community.

= MATLAB interface (sequential):

— Many applied mathematicians who are not comfortable in FORTRAN
or C are experienced with MATLAB.

— Allows the vectors, Jacobians and nonlinear function evaluations as
well as user main program to be provided in MATLAB

— Scripting language for high user efficiency, rapid prototyping
— Trivial to use MATLAB’s powerful graphics interactively with PETSc

SIAM CSE Conference, March 3, 2011
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Status

= We can solve 1 and 2 dimensional phase field problems with
constant and degenerate mobility as DVI using PETSc.

» Parallel framework comes “for free”

SIAM CSE Conference, March 3, 2011
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Cahn-Hillard Case lll

Case Il, Constant Mobility,h = 0.0125,t=10

Case Il, Constant Mobility,h = 0.0125,t = 0.05

Case Il, Constant Mohility,h = 0.0125,0t = 0.15
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= Cahn-Hillard Case Il

Case Il, Degenerate Mohility,h = 0.0125,t=0

Case Il, Degenerate Mobility,h = 0.0125,t = 0.1

Aarch 32011
10 en 30 40 a0 60 70 an

Case Il, Degenerate Mobhility,h = 0.0125,t = 0.05

Case |l, Degenerate Mobility,h = 0.0125,Dt = 0.15




Initial scalability tests

v

Solution times for Allen—Cahn saddle point problem
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5. Numerical Results for Void Formation /
Radiation Damage

SIAM CSE Conference, March 3, 2011
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. v Ry K; K
=N /V W) F(cor i) + T (en, ) + SE Ve + S Vel + 2|V | dv
free energy functional

fi(cy,ci) = E;fcv + Eifci + kpT[c, In(cy) + ¢;In(c;) + (1 — ¢y, — ¢;) In(1 — ¢, — ¢;)]

fY(co ci) = Al(ey, — 1)* + ¢

P. Millett, A. EI-Azab, S. Rokkam, M. Tonks, D. Wolf
Comp. Mate. Sci. (50) 2011
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%Ctv _v. (MUV%) — Riv(z, %)
% _v. (szg—f) — Riy(z, 1)
MogE  Moig

SIAM CSE Conference, March 3, 2011

Degenerate Mobility

Rr _ Rbulk: + 772 . Rsurf

33



Void Grow : DVI, PATH, Dt = 1e-3
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Void Grow
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Void Shrink : DVI , PATH, Dt = 1e-3
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Void Shrink : DVI , PATH, Dt = 1e-3
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Case |l

0cy,

5 =V M,V (_KUV2CU + \I}ZJ(CU’ 77)) Constant Mobility

on
o =L (=26, V0 + ¥, (cy,n))
\Ij;(cva 77) — h(??)(qu +Inc, — ln(l — Cv))

—2A(cy — 2n(n+2)(n — 1)* + 2B(c, — 1)n?

\If%(cv, 77) — hl(”) <E1{C’U + ¢y lne, + (1 - Cv) 1Il<1 - CU)))
—Al(c, — 63)2(4773 —6n+2)+2B(c, — 1)277

S.Rokkam, A.Ei-Azab, P.Millett and D.Wolf

Modeling Simul.Mater. Sci.Eng. 17(2009)
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Direct finite difference results
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Direct finite difference results
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DVI + PATH results
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Why DVI?

Gy(cy) = E,{;cv + kT |c,In(cy) + (1 — ¢) In(1 — ¢,)]

temperature. (To avoid numerical instabilities, if ¢, < O the first term in brackets is dropped
and a negative sign is assigned to the first term on the rhs. Likewise, if ¢, > 1 the second
term in brackets is dropped.) The shape function A (n) in equation (1) has the expression

P.Millett, S. Rokkam, A. ElI-Azab, M. Tonks, D. Wolf
Modeling Simul. Mater. Sci. Eng. 17(2009)
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Why DVI?

Direct FD, A x =1
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Direct FD, Same Dt, Different Dx
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Conclusion

= We proposed a DVI formulation and the associated time-stepping schemes.

= We have created initial computational infrastructure for DVI.

= We have proposed a Schur-complement based preconditioning approach. For
Allen-Cahn with constant mobility (likely the complexity driver) excellent

scalability.

= We have validated it for void formation/radiation damage.

=  We have demonstrated it is more stable than clamping.

= Future:

Multi-grain parallel, large-scale experiments.
Numerical analysis of the DVI approach.
Solving large radiation damage problems.
Higher-order schemes.

Extending to other free boundary physics ...

We have only scratched the surface on the modeling significance of DVIs.

SIAM CSE Conference, March 3, 2011
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